Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.707
Filtrar
1.
BMC Urol ; 24(1): 59, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481182

RESUMO

BACKGROUND: Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Phosphofructokinase 1 (PFK-1) is one of member of PFK, which plays an important role in reprogramming cancer metabolism, such as lactylation modification. Zinc finger E-box-binding homeobox 1 (ZEB1) has been demonstrated to be a oncogene in many cancers. Therefore, this study was performed to explore the effects of PFK-1 on the lactylation of ZEB1 in BC development. METHODS: Cell viability was measured using the CCK-8 kit. The glucose assay kit and lactate assay kit were used to detect glucose utilization and lactate production. The DNA was purified and quantified by qRT-PCR. RESULTS: In the present study, we found that ZEB1 expression levels were significantly elevated in bladder cancer cells. Impaired PFK-1 expression inhibits proliferation, migration, and invasion of BC cells and suppresses tumour growth in vivo. We subsequently found that knockdown of PFK-1 decreases glycolysis, including reduced glucose consumption, lactate production and total extracellular acidification rate (ECAR). Mechanistically, PFK-1 inhibits histone lactylation of bladder cancer cells, and thus inhibits the transcription activity of ZEB1. CONCLUSION: Our results suggest that PFK-1 can inhibit the malignant phenotype of bladder cancer cells by mediating the lactylation of ZEB1. These findings suggested PFK-1 to be a new potential target for bladder cancer therapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias da Bexiga Urinária/patologia , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Lactatos , Glucose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
J R Soc Interface ; 21(211): 20230588, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350614

RESUMO

In many living organisms displaying circadian rhythms, the intake of energy often occurs in a periodic manner. Glycolysis is a prototypical biochemical reaction that exhibits a self-sustained oscillation under continuous injection of glucose. Here we study the effect of periodic injection of glucose on the glycolytic oscillation from a dynamical systems perspective. In particular, we employ Goldbeter's allosteric model of phosphofructokinase as a model system for glycolytic oscillations, and explore the effect of periodic substrate influx of varying frequencies and amplitudes by building the phase diagrams of Lyapunov exponents and oscillatory periods. When the frequency of driving is tuned around the harmonic and sub/super-harmonic conditions of the natural frequency, the system is entrained to a frequency-locked state, forming an entrainment band that broadens with an increasing amplitude of driving. On the other hand, if the amplitude is substantial, the system may transition, albeit infrequent, to a chaotic state which defies prediction of dynamical behaviour. Our study offers in-depth understandings into the controllability of glycolytic oscillation as well as explaining physical underpinnings that enable the synchronous oscillations among a dense population of cells.


Assuntos
Ritmo Circadiano , Modelos Biológicos , Fosfofrutoquinase-1/metabolismo , Glicólise , Glucose
3.
Cell Death Dis ; 14(12): 816, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086793

RESUMO

Metabolic reprogramming to glycolysis is closely associated with the development of chronic kidney disease (CKD). Although it has been reported that phosphofructokinase 1 (PFK) is a rate-limiting enzyme in glycolysis, the role of the platelet isoform of PFK (PFKP) in kidney fibrosis initiation and progression is as yet poorly understood. Here, we investigated whether PFKP could mediate the progression of kidney interstitial fibrosis by regulating glycolysis in proximal tubular epithelial cells (PTECs). We induced PFKP overexpression or knockdown in renal tubules via an adeno-associated virus (AAV) vector in the kidneys of mice following unilateral ureteral occlusion. Our results show that the dilated tubules, the area of interstitial fibrosis, and renal glycolysis were promoted by proximal tubule-specific overexpression of PFKP, and repressed by knockdown of PFKP. Furthermore, knockdown of PFKP expression restrained, while PFKP overexpression promoted TGF-ß1-induced glycolysis in the human PTECs line. Mechanistically, Chip-qPCR revealed that TGF-ß1 recruited the small mothers against decapentaplegic (SMAD) family member 3-SP1 complex to the PFKP promoter to enhance its expression. Treatment of mice with isorhamnetin notably ameliorated PTEC-elevated glycolysis and kidney fibrosis. Hence, our results suggest that PFKP mediates the progression of kidney interstitial fibrosis by regulating glycolysis in PTECs.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Fibrose , Glicólise , Rim/patologia , Fosfofrutoquinase-1/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia
4.
Cell Rep ; 42(11): 113426, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967006

RESUMO

Aerobic glycolysis is critical for cancer progression and can be exploited in cancer therapy. Here, we report that the human carboxymethylenebutenolidase homolog (carboxymethylenebutenolidase-like [CMBL]) acts as a tumor suppressor by reprogramming glycolysis in colorectal cancer (CRC). The anti-cancer action of CMBL is mediated through its interactions with the E3 ubiquitin ligase TRIM25 and the glycolytic enzyme phosphofructokinase-1 platelet type (PFKP). Ectopic CMBL enhances TRIM25 binding to PFKP, leading to the ubiquitination and proteasomal degradation of PFKP. Interestingly, CMBL is transcriptionally activated by p53 in response to genotoxic stress, and p53 activation represses glycolysis by promoting PFKP degradation. Remarkably, CMBL deficiency, which impairs p53's ability to inhibit glycolysis, makes tumors more sensitive to a combination therapy involving the glycolysis inhibitor 2-deoxyglucose. Taken together, our study demonstrates that CMBL suppresses CRC growth by inhibiting glycolysis and suggests a potential combination strategy for the treatment of CMBL-deficient CRC.


Assuntos
Neoplasias , Fosfofrutoquinase-1 Tipo C , Humanos , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Am J Physiol Cell Physiol ; 325(5): C1354-C1368, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781737

RESUMO

Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfatase/farmacologia , Fosfofrutoquinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Fosfofrutoquinase-1/metabolismo , Glucose/metabolismo , MicroRNAs/metabolismo , Albuminas/metabolismo , Albuminas/farmacologia , Glicólise
6.
Adv Biol Regul ; 90: 100987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806136

RESUMO

Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.


Assuntos
Fosfofrutoquinase-1 , Fosfofrutoquinases , Humanos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Fígado/metabolismo , Citratos , Ácido Cítrico
7.
BMB Rep ; 56(11): 618-623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605615

RESUMO

Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].


Assuntos
Fosfofrutoquinase-1 , Fosfoproteínas Fosfatases , Fosforilação , Fosfoproteínas Fosfatases/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Metabolismo dos Carboidratos , Glicólise
8.
Arch Biochem Biophys ; 743: 109676, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37380119

RESUMO

The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.


Assuntos
Clostridium thermocellum , Fosfofrutoquinases , Fosfofrutoquinases/metabolismo , Clostridium thermocellum/metabolismo , Difosfatos , Sequência de Aminoácidos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Bactérias/metabolismo , Trifosfato de Adenosina , Guanosina Trifosfato , Cinética
9.
Cancer Sci ; 114(4): 1663-1671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601784

RESUMO

To meet cellular bioenergetic and biosynthetic demands, cancer cells remodel their metabolism to increase glycolytic flux, a phenomenon known as the Warburg effect and believed to contribute to cancer malignancy. Among glycolytic enzymes, phosphofructokinase-1 (PFK1) has been shown to act as a rate-limiting enzyme and to facilitate the Warburg effect in cancer cells. In this study, however, we found that decreased PFK1 activity did not affect cell survival or proliferation in cancer cells. This raised a question regarding the importance of PFK1 in malignancy. To gain insights into the role of PFK1 in cancer metabolism and the possibility of adopting it as a novel anticancer therapeutic target, we screened for genes that caused lethality when they were knocked down in the presence of tryptolinamide (TLAM), a PFK1 inhibitor. The screen revealed a synthetic chemical-genetic interaction between genes encoding subunits of ATP synthase (complex V) and TLAM. Indeed, after TLAM treatment, the sensitivity of HeLa cells to oligomycin A (OMA), an ATP synthase inhibitor, was 13,000 times higher than that of untreated cells. Furthermore, this sensitivity potentiation by TLAM treatment was recapitulated by genetic mutations of PFK1. By contrast, TLAM did not potentiate the sensitivity of normal fibroblast cell lines to OMA, possibly due to their reduced energy demands compared to cancer cells. We also showed that the PFK1-mediated glycolytic pathway can act as an energy reservoir. Selective potentiation of the efficacy of ATP synthase inhibitors by PFK1 inhibition may serve as a foundation for novel anticancer therapeutic strategies.


Assuntos
Adenosina Trifosfatases , Detecção Precoce de Câncer , Neoplasias , Fosfofrutoquinase-1 , Humanos , Glicólise/genética , Células HeLa , Neoplasias/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Interferência de RNA , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
10.
Pest Manag Sci ; 79(5): 1684-1691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36602054

RESUMO

BACKGROUND: Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS: In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 µg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 µg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION: Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Buchnera , Animais , Fosfofrutoquinases/metabolismo , Fosfofrutoquinase-1/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Anticancer Res ; 43(1): 75-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585185

RESUMO

BACKGROUND/AIM: Phosphofructokinase 1 platelet isoform (PFKP) catalyzes a rate-limiting reaction in glycolysis. It is highly expressed in several tumors, including breast cancer (BC). It can regulate tumor progression through metabolic reprogramming and gene transcription. In addition, overexpression of vascular endothelial growth factor (VEGF) is commonly observed in BC, which is associated with poor prognosis. However, whether PFKP regulates VEGF expression in BC remains unknown. Thus, the aim of this study was to investigate whether PFKP could regulate VEGF expression in BC. MATERIALS AND METHODS: We designed an in vitro study to investigate the role of PFKP in VEGF expression and angiogenesis using several experiments, including shRNA-mediated PFKP knock-down, RNAi-resistant PFKP restoration, qPCR, immunoblotting, luciferase reporter assay and tube formation assay. The clinical relationship between PFKP and VEGF was analyzed using The Cancer Genome Atlas (TCGA) database. RESULTS: PFKP expression was associated with VEGF expression in BC patients from the TCGA database. Importantly, PFKP played an essential role in the EGFR activation-induced VEGF expression in BC cells. Mechanistically, EGFR-phosphorylated PFKP Y64 played a critical role in AKT-mediated transcriptional expression of HIF-1α and subsequent VEGF transcription. Hence, PFKP expression played a role in human umbilical vein endothelial cells (HUVECs) tube formation by regulating VEGF expression in BC cells. CONCLUSION: These findings highlight a novel mechanism underlying the non-metabolic function of PFKP in VEGF expression in BC and provide a therapeutic potential of targeting PFKP in BC patients.


Assuntos
Neoplasias da Mama , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fosfofrutoquinase-1 , Fator A de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Receptores ErbB/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Isoformas de Proteínas/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cell Death Dis ; 13(11): 1002, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435833

RESUMO

Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells. Importantly, we demonstrate that EGFR-phosphorylated PFKP Y64 has critical roles in both AKT/SP1-mediated transcriptional expression of HIF-1α and in the AKT-mediated ß-catenin S552 phosphorylation, to fully enhance VEGF transcription, subsequently promoting blood vessel formation and brain tumor growth. Levels of PFKP Y64 phosphorylation in human GBM specimens are positively correlated with HIF-1α expression, ß-catenin S552 phosphorylation, and VEGF expression. Conversely, VEGF upregulates PFKP expression in a PFKP S386 phosphorylation-dependent manner, leading to increased PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells. These findings highlight a novel mechanism underlying the mutual regulation that occurs between PFKP and VEGF for promoting GBM tumor growth and also suggest that targeting the PFKP/VEGF regulatory loop might show therapeutic potential for treating GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosforilação , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfofrutoquinase-1/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Encefálicas/genética , Isoformas de Proteínas/metabolismo , Receptores ErbB/metabolismo
13.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286488

RESUMO

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Glicólise , Termodinâmica , Trifosfato de Adenosina/metabolismo
14.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077431

RESUMO

Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a "metabolically abnormal system". Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the "Warburg effect". Energy-metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the "Warburg effect", tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.


Assuntos
Glicólise , Neoplasias , Hexoquinase/metabolismo , Humanos , Neoplasias/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Mutase/metabolismo , Piruvatos , Microambiente Tumoral
15.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095960

RESUMO

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Assuntos
Resistência à Insulina , Chá de Kombucha , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citrato (si)-Sintase/metabolismo , Farneseno Álcool/metabolismo , Farneseno Álcool/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares/metabolismo , Carboidratos/farmacologia , Serina/metabolismo , Serina/farmacologia , Fosfofrutoquinase-1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
16.
Food Chem ; 397: 133739, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940100

RESUMO

This study examined cooperative regulation of phosphorylation and acetylation of glycolytic enzymes on their activity and lamb meat quality. Muscle samples were divided into two groups (fast and slow) according to their glycolysis rate as defined by pH decline rate from 1 h to 1 d postmortem. In slow glycolysis rate group, the activity of hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) was lower and meat sample showed lower a*, higher shear force and cooking loss. The acetylation and phosphorylation of HK were positively correlated with HK activity. The acetylation and phosphorylation of PFK were correlated with shear force and negatively associated with PFK activity. The acetylation and phosphorylation of PK were significantly correlated with each other but showed insignificant correlations with PK activity. Briefly, the phosphorylation and acetylation of HK, PFK and PK coregulate glycolysis through different crosstalk patterns on their activity and this might affect meat quality.


Assuntos
Fosfofrutoquinase-1 , Carne Vermelha , Acetilação , Animais , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinases , Fosforilação , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Ovinos
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 625-636, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593470

RESUMO

Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.


Assuntos
Frutose-Bifosfato Aldolase , Glucose-6-Fosfato Isomerase , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Triose-Fosfato Isomerase/metabolismo , Condrócitos/metabolismo , Glucose/metabolismo , Aspartato Aminotransferase Citoplasmática/metabolismo , Fosfoglicerato Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Citrato (si)-Sintase/metabolismo , Glicólise , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fosfofrutoquinase-1/metabolismo , Osteoblastos/metabolismo , Comunicação , Lactatos , Trifosfato de Adenosina/metabolismo
18.
Circ Res ; 130(11): e26-e43, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35450439

RESUMO

BACKGROUND: Mechanical forces play crucial roles in neointimal hyperplasia after vein grafting; yet, our understanding of their influences on vascular smooth muscle cell (VSMC) activation remains rudimentary. METHODS: A cuff mouse model was used to study vein graft hyperplasia. Fifteen percent to 1 Hz uniaxial cyclic stretch (arterial strain), 5% to 1 Hz uniaxial cyclic stretch or a static condition (venous strain) were applied to the cultured VSMCs. Metabolomics analysis, cell proliferation and migration assays, immunoblotting, co-immunoprecipitation, mutagenesis, pull-down and surface plasmon resonance assays were employed to elucidate the potential molecular mechanisms. RESULTS: RNA-sequencing in vein grafts and the controls identified changes in metabolic pathways and downregulation of mitochondrial protein MFN2 (mitofusin 2) in the vein grafts. Exposure of VSMCs to 15% stretch resulted in MFN2 downregulation, mitochondrial fragmentation, metabolic shift from mitochondrial oxidative phosphorylation to glycolysis, and cell proliferation and migration, as compared with that to a static condition or 5% stretch. Metabolomics analysis indicated an increased generation of fructose 1,6-bisphosphate, an intermediate in the glycolytic pathway converted by PFK1 (phosphofructokinase 1) from fructose-6-phosphate, in cells exposed to 15% stretch. Mechanistic study revealed that MFN2 physically interacts through its C-terminus with PFK1. MFN2 knockdown or exposure of cells to 15% stretch promoted stabilization of PFK1, likely through interfering the association between PFK1 and the E3 ubiquitin ligase TRIM21 (E3 ubiquitin ligase tripartite motif [TRIM]-containing protein 21), thus, decreasing the ubiquitin-protease-dependent PFK1 degradation. In addition, study of mechanotransduction utilizing pharmaceutical inhibition indicated that the MFN2 downregulation by 15% stretch was dependent on inactivation of the SP1 (specificity protein 1) and activation of the JNK (c-Jun N-terminal kinase) and ROCK (Rho-associated protein kinase). Adenovirus-mediated MFN2 overexpression or pharmaceutical inhibition of PFK1 suppressed the 15% stretch-induced VSMC proliferation and migration and alleviated neointimal hyperplasia in vein grafts. CONCLUSIONS: MFN2 is a mechanoresponsive protein that interacts with PFK1 to mediate PFK1 degradation and therefore suppresses glycolysis in VSMCs.


Assuntos
Mecanotransdução Celular , Músculo Liso Vascular , Fosfofrutoquinase-1/metabolismo , Animais , Proliferação de Células , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Hiperplasia/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Ubiquitina-Proteína Ligases/metabolismo
19.
Biophys J ; 121(5): 692-704, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131294

RESUMO

Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3-5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Fosfofrutoquinase-1 , Animais , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo
20.
PLoS Comput Biol ; 18(2): e1009841, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148308

RESUMO

While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.


Assuntos
Glicólise , Neoplasias , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Humanos , Neoplasias/metabolismo , Fosfofrutoquinase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...